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In this paper we propose a methodology for measuring the ‘relative effectiveness’ of healthcare services
(i.e. the effect of hospital care on patients) under general conditions, in which: α) a healthcare outcome
underlies qualitative and quantitative observable indicators; β) we are interested in studying the simulta-
neous dependency of multiple outcomes on covariates (where the outcomes can also be correlated to each
other); γ) the relative effectiveness is adjusted for hospital-specific covariates; δ) we hypothesise a general
distribution for random disturbances and the random parameters of relative effectiveness. For this topic,
a generalisation of the SURE (seemingly unrelated regression equations) multilevel model is proposed.
The solutions are obtained by means of Bayesian inference methods. Since there is currently no software
available to estimate this model, an SAS procedure based on Markov Chain Monte Carlo methods has
been developed by the authors, in line with Goldstein & Spiegelhalter (1996, J. R. Stat. Soc. Ser. A, 159,
385–443), Spiegelhalter et al. (1996, Bayesian Using Gibbs Sampling Manual. Cambridge: MRC Bio-
statistic Unit, Institute of Public Health) and Albert & Chib (1997, J. Am. Stat. Assoc., 92, 916–925). In
addition, a new theoretical result regarding the joint posterior distribution for the parameters is provided.
The model proposed has been implemented for an effectiveness study of a selection of Lombard hospitals.

Keywords: relative effectiveness; multilevel model; seemingly unrelated regression equations; SURE
multilevel model; Markov Chain Monte Carlo; Gibbs sampling.

1. Introduction

Performance measurement for healthcare services, i.e. hospitals, is becoming increasingly important for
the improvement of healthcare quality.

In this paper we refer to the concept of ‘effectiveness’, i.e. the effect of hospital care on patients. We
are particularly interested in measuring ‘relative effectiveness’ in order to compare different healthcare
institutions in terms of ‘healthcare outcomes’.

A healthcare outcome is definable as the “technical result of a diagnostic procedure or specific
treatment episode” (Opit, 1993).

Healthcare outcomes, however, are influenced by covariates concerning the ‘case-mix’ of the pa-
tients, definable as the variability of their clinical and socio-demographic aspects. In addition, health-
care outcomes are related to the organisational capacity, resources, facilities and other characteristics
of hospitals (Zaslavsky, 2001). Therefore, to allow comparisons between healthcare institutions, what

†Email: giorgio.vittadini@unimib.it
‡Email: simona.minotti@unicatt.it

c© The author 2005. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 at O
sp S G

erardo on D
ecem

ber 13, 2016
http://im

am
an.oxfordjournals.org/

D
ow

nloaded from
 

http://imaman.oxfordjournals.org/


240 G. VITTADINI AND S. C. MINOTTI

is of major interest is not only the standardisation of healthcare outcomes but also the influence of the
individual and institutional covariates. Relative effectiveness needs to be adjusted for patient-specific
and hospital-specific variables, as underlined by Goldstein & Spiegelhalter (1996): “When standard
measures are available across organisations, they should be risk-adjusted to account for differences in
environmental factors influencing outcomes”.

In the nineties, numerous authors (Thomas et al., 1994; Normand et al., 1995; Morris &
Christiansen, 1996; Goldstein & Spiegelhalter, 1996; Rice & Leyland, 1996; Leyland & Boddy, 1998;
Marshall & Spiegelhalter, 2001) proposed studying ‘relative effectiveness’ by means of the multilevel
model (Hox, 1995). “The multilevel model overcomes small sample problems by appropriately pooling
information across institutions, introducing some bias or shrinkage, and providing a statistical frame-
work that allows one to quantify and explain variability in outcomes through the investigation of insti-
tutional level covariates” (Marshall & Spiegelhalter, 2001, p. 128).

The multilevel model specified for the j-th outcome is:

y j = u j Z j + βββ j X j + e j , (1)

where y j is a row vector (1 × n) which contains the values of the j-th outcome regarding the n patients
hospitalised in participating q hospitals (n = ∑ q

v=1nv , where nv is the number of patients in the v-th
hospital); u j is a row vector (1 × q) containing random coefficients interpretable as the effectiveness
of hospitals (with respect to outcome y j ) adjusted for patient characteristics; Z j is a ‘design matrix’
(q × n); βββ j is a row vector (1 × t j ) containing fixed coefficients for patient covariates; X j is a non-
stochastic matrix (t j × n) of covariates referring to hospitalised patients (these covariates also include
the initial state of health); e j is a row vector (1 ×n) containing random disturbances associated with the
patients.

The authors cited above have considered the multilevel model under the following restrictions:

a) the consideration of one outcome at a time as the response variable;

b) binomial distribution of the outcome;

c) no consideration of hospital-specific characteristics as possible covariates;

d) assumption of multivariate normal distribution for random disturbances and the random parame-
ters of effectiveness.

However, the restrictions indicated above often reduce the applicability of effectiveness studies
when:

α) a healthcare outcome, which can be expressed in statistical terms as a latent construct, underlies
qualitative and quantitative observable indicators;

β) we are interested in studying the simultaneous dependency of multiple outcomes on covariates,
where the outcomes can also be correlated to each other (e.g. the correlation between mental and
physical states of health in quality of life studies);

γ) relative effectiveness needs to be adjusted for hospital characteristics, such as resources, organi-
sational capacity, etc. for comparison studies;

δ) the assumption of multivariate normal distribution for random disturbances and the random pa-
rameters of relative effectiveness is not respected and no prior information on parameter distribu-
tion is available (Langford & Lewis, 1998; Marshall & Spiegelhalter, 2001).

The newly developed methodology proposed in this paper is an attempt to overcome the present
restrictions for the general application of effectiveness studies.
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2. The new methodology

The methodology we are proposing combines already existing methods and models in the field of the
multivariate analysis and consists of a few steps, which solve the problems illustrated above.

α) First of all, if we interpret outcomes as latent constructs underlying a set of observable indicators
(Gertler, 1988), they can be defined in statistical terms as latent variables (Muthen & Speckart,
1985; Mc Leod, 2001; Goldstein & Leyland, 2001). In order to obtain the solutions, we avoid trad-
itional structural equation models, which lead to indeterminacy of latent scores (Vittadini, 1989).
Instead the regression component decomposition (RCD) method (Schoenemann & Steiger, 1976),
which approximates latent variables by means of linear combinations of their quantitative indi-
cators, can be utilised. In particular, in order to obtain proxies of the latent healthcare outcomes
when indicators are entirely qualitative or both qualitative and quantitative, RCD can be combined
with methods of multidimensional scaling (Vittadini, 2001), such as Alsos Princals algorithm (De
Leeuw & Van Rijckervorsel 1980; Young, 1981), which quantifies observable indicators and ob-
tains their quantitative linear transformations according to principal components criteria in an
iterative procedure.

β) Secondly, for these kinds of studies, the multivariate regression model is not adequate, as impli-
cated in point β). Vittadini (2001) has proposed the combination of the multilevel model with the
seemingly unrelated regression equations (SURE) model (Srivastava & Giles, 1987) in a unique
model, entitled the SURE multilevel model. There are two reasons for this. First, the SURE
model consists of a system of simultaneous equations, equal in number to the response variables,
where disturbance terms related to different individuals in the same equation are non-correlated,
but disturbance terms in separate equations are correlated. Second, the SURE model allows the
specification of different regressors for each outcome, e.g. in the case of two different outcomes
(final mental state of health and final physical state of health), we can indicate the initial state of
health (which is different for each outcome) from among the various explicative variables.
In matrix notation, the SURE multilevel model specified for p outcomes can be expressed as:

y = uZ + βββX + e, (2)

where y = (y′
1, . . . , y′

j , . . . , y′
p) is a row vector (1 × np), (with y′

j , j = 1, . . . , p, row vectors
(1 × n)); u = (u′

1, . . . , u′
j , . . . , u′

p) is a row vector (1 × qp), (with u′
j , j = 1, . . . , p, row

vectors (1 × q)); Z is a ‘design matrix’ (qp × np); βββ = (βββ ′
1, . . . , βββ

′
j , . . . , βββ

′
p) is a row vector

(1 × t) (with βββ ′
j , j = 1, . . . , p, row vectors (1 × t j ), t = ∑p

j=1 t j ); X is a non-stochastic block
diagonal matrix (t × np), (with typical element X j , j = 1, . . . , p, non-null matrix (t j × n));
e = (e′

1, . . . , e′
j , . . . , e′

p) is a row vector (1 × np), (with e′
j , j = 1, . . . , p, row vectors (1 × n)).

Under the hypotheses of the SURE model, the stochastic vector of disturbances e follows a multi-
variate normal distribution with

E[e] = 0,

E[e′e] = ���e = ���e ⊗ In,
(3)

where ⊗ denotes the Kronecker product (so that ���e is (np × np)) and

���e =

⎡
⎢⎢⎢⎢⎣

σ 2
1 σ12 . . . σ1p

σ21 σ 2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ 2
p

⎤
⎥⎥⎥⎥⎦
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is a (p × p) positive definite symmetric matrix. “The definition of ���e precludes the possibility
of any linear dependencies among the contemporaneous disturbances in the p equations of the
model” (Srivastava & Giles, 1987, p. 5).

γ) Moreover, with reference to point γ), we introduce another equation describing hospital character-
istics. That means specifying a second level equation (i.e. referring to hospitals), which expresses
the random parameters u jv ( j = 1, . . . , p; v = 1, . . . , q) as a function of hospital characteristics

u = δδδF + m, (4)

where δδδ = (δδδ′
1, . . . , δδδ

′
j , . . . , δδδ

′
p) is a row vector (1 × hp) containing fixed parameters for hospital

covariates (with δδδ′
j , j = 1, . . . , p, row vectors (1 × h)); F is a non-stochastic block diagonal

matrix (hp × qp) containing the observable characteristics of hospitals (with typical element
F j , j = 1, . . . , p, non-null matrix (h × q)); m = (m′

1, . . . , m′
j , . . . , m′

p) is a row vector (1 × qp)

containing random residuals associated with hospitals (with m′
j , j = 1, . . . , p, row vectors (1×q)

and block diagonal covariance matrix ���m—with typical element s2
j Iq—as implied by the assump-

tion of non-correlation between disturbances in separate equations and also between disturbances
related to different individuals in the same equation). These random residuals indicate the rela-
tive effectiveness of hospitals (with respect to outcomes) adjusted for the characteristics of both
patients and hospitals.
It is further assumed that

X���−1
e Z′ = O, (5)

where O is a matrix (t × np) of zeroes. This holds if values of explicative variables referring to
the same hospital are standardised.

δ) The SURE multilevel model, like the multilevel model, is usually based on the assumption of mul-
tivariate normal distribution for both random disturbances and the random parameters of relative
effectiveness (Srivastava & Giles, 1987; Montgomery, 1997). However, since this assumption is
often too restrictive, in this paper we propose a generalisation of the SURE multilevel model based
on the multivariate normal distribution of order λ, also known as ‘exponential power distribution’
(Subbotin, 1923; Box & Tiao, 1992). This distribution is symmetrical and flexible with respect to
data and follows this formula:

f (y) = k|���−1
e |1/2 exp

{
(−1)[(y − uZ − βββX)���−1

e (y − uZ − βββX)′]λ/2}, (6)

where k is a coefficient of proportionality and λ > 1.
The model now satisfies the requirement of point δ).

With the inclusion of this last modification, we now have the complete structure of the general SURE
multilevel model, the first statistical instrument capable of satisfying effectiveness study requirements
in all their complexity.

3. A Bayesian approach to estimation

In order to estimate the model introduced, we propose a Bayesian approach, as did authors cited in
Section 1, who have provided ranking among hospitals based on the multilevel model. “Recent compu-
tational advances, specifically in MCMC (Markov Chain Monte Carlo) methods, allow one to quantify
the uncertainty associated with an institution’s rank and so to determine the extent to which conclusions
may be based on explicit rankings” (Marshall & Spiegelhalter, 2001, p. 128).
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Under the general assumption of uniform non-informative distribution for ‘random effects’ u jv ( j =
1, . . . , p; v = 1, . . . , q) (valid when we do not have sufficient information to hypothesise an informative
prior distribution), the model described by (2) and (4) is interpretable as a mixed model, where the
parameters β jτ ( j = 1, . . . , p; τ = 1, . . . , t j ) are ‘fixed effects’ and are exchangeable with each other
and with respect to u jv (Gelman et al., 1995, pp. 368–369; Lindley & Smith, 1972; Smith, 1973).
Before going ahead, however, it is necessary to clarify the two new terms introduced.

1. “The terms ‘fixed’ and ‘random’ come from the non-Bayesian statistical tradition and are some-
what confusing in a Bayesian context, where all unknown parameters are treated as ‘random’.
The non-Bayesian view considers ‘fixed effects’ to be fixed unknown quantities, but the standard
procedures proposed to estimate these parameters based on specific repeated-sampling properties,
happen to be equivalent to the Bayesian posterior inference under a non-informative (uniform)
prior distribution” (Gelman et al., 1995, pp. 368–369). Therefore, the fixed effects are inter-
pretable in a Bayesian context as random parameters of a conventional non-informative uniform
prior distribution.

2. The definition of exchangeability is given by Gelman et al. (1995) on pp. 123–124. “If no
information—other than the data y—is available to distinguish any of the parameter vectors u j ’s
from any of the others, and no ordering or grouping of the parameters can be made, one must
assume symmetry among the parameters in their prior distribution. This symmetry is represented
probabilistically by exchangeability; the parameters (u1, . . . , u j , . . . , up) are exchangeable in
their joint distribution if P(u1, . . . , u j , . . . , up) is invariant to permutations of the
indexes (1, . . . , p). The simplest form of an exchangeable distribution has each of the parameter
vectors u j as an independent sample from a population distribution governed by some unknown
parameter vector φφφ”:

P(u|φφφ) =
p∏

j=1

P(u j |φφφ). (7)

Coming back to the model introduced, the likelihood function is formulated from (6) as:

P(y|u, βββ,���−1
e ) = k|���−1

e |n/2 exp
{
(−1)[(y − uZ − βββX)���−1

e (y − uZ − βββX)′]λ/2}, (8)

and assuming independence between the prior information regarding the elements of u, βββ and ���−1
e , and

following Jeffreys’ invariance theory (Zellner, 1971, p. 242; Srivastava & Giles, 1987, p. 317), the joint
non-informative prior distribution for (u, βββ,���−1

e ) is given by:

P(u, βββ,���−1
e ) = P(u)P(βββ)P(���−1

e ), (9)

where:

1) P(u) ∝ uniform (−∞ < u < +∞); P(u jv ) ∝ uniform (−∞ < u jv < +∞),

2) P(βββ) ∝ uniform (−∞ < βββ < +∞); P(β jτ ) ∝ uniform (−∞ < β jτ < +∞),

3) P(���−1
e ) ∝ |���−1

e |−(p+1)/2 (prior on the (p + 1)/2 distinct elements of ���−1
e ).

On combining (8) and (9), the joint posterior distribution for (u, βββ,���−1
e ) is

P(u, βββ,���−1
e |y) ∝ P(y|u, βββ,���−1

e )P(u, βββ,���−1
e )

∝ k|���−1
e |[n−(p+1)]/2 exp

{
(−1)[(y − uZ − βββX)���−1

e (y − uZ − βββX)′]λ/2}. (10)

For SURE models with multivariate normal distribution for the disturbance vector e and non-
informative prior distribution for βββ and ���−1

e , the conditional posterior distribution for βββ given ���−1
e
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is multivariate normal in form (Zellner, 1971, p. 242; Srivastava & Giles, 1987, p. 317). In Appendix
A, we will demonstrate that for the SURE multilevel model, introduced in Section 2, the conditional
posterior density for u, given ���−1

e (indicated by P(u|���−1
e , y)) and the conditional posterior density for

βββ, given ���−1
e (indicated by P(βββ|���−1

e , y)) are in the multivariate normal form of order λ.
If there is no information about ���−1

e , Zellner (1971) suggests replacing ���−1
e by a consistent estimate

S−1
e , which yields the conditional posterior sample densities P(u|S−1

e , y) and P(βββ|S−1
e , y). “In large

samples S−1
e will not differ markedly from ���−1

e , and thus going ahead with the assumption ���−1
e = S−1

e
will produce satisfactory results” (Zellner, 1971, p. 243). In small samples, however, it is better to
obtain the marginal posterior densities P(u|y) and P(βββ|y). “In finite samples the substitution of S−1

e
for ���−1

e may be less appealing. In fact, one of the principal advantages of the Bayesian approach
to the estimation is that no such substitution is necessary. Instead of basing our inferences on the
conditional posterior density, the elements of ���−1

e may be treated as ‘nuisance parameters’, and elim-
inated from by multivariate integration to yield the marginal posterior density” (Srivastava & Giles,
1987, p. 318).

Once the posterior distributions for u and βββ are obtained, expected values and credible intervals for
fixed parameters βββ provide information regarding the relationship between patient characteristics and
outcomes. Next, with reference to (4), regressing the expected values for random parameters u on matrix
F, we obtain estimates for fixed parameters δδδ j (which provide information regarding the relationship
between hospital characteristics and outcomes) and expected values and credible intervals for random
residuals m j . An effectiveness ranking of hospitals is provided by comparing the interval boundaries of
m j . We can say that hospital v1 can be considered as better than hospital v2 when the lower bound of
credible interval in reference to v1 is greater than the upper bound of v2. In the opposite case, hospitals
v1 and v2 demonstrate the same level of effectiveness (Goldstein & Spiegelhalter, 1996). If, as usually
happens in evaluation studies, the measurement of relative effectiveness is repeated at time intervals
with regularity, information drawn at a previous time can be utilised in order to improve the estimates
at the following interval. The posterior distribution at the previous time becomes the prior distribution
at the following interval.

4. The application

We have applied the proposed methodology in an effectiveness study for a set of public hospitals in four
Lombardy health districts (Milan, Como, Lecco, Brescia). Two diagnosis related groups (DRGs) were
considered regarding two chronic-degenerative clinical conditions: Cardiac Arrhythmia and Conduction
Disorders with CC (DRG 138), and Medical Back Problems (DRG 243). During the period July 1998–
July 1999, the SF-12 Quality of Life questionnaire (a 12-item questionnaire which produces separate
mental and physical health status scores) was administered to a sample of patients previously discharged
from hospital and coded by DRG 138 or 243.

A second survey was carried out 1 year later (October 1999–November 2000) on re-hospitalised
patients who had previously answered the first questionnaire, adopting the same SF-12 Quality of Life
questionnaire. The re-screened sample resulted in a total of 1213 interviews.

By means of the method described in Section 2 point α), from the twelve items in the SF-12 ques-
tionnaire, we obtain two latent outcomes: mental quality of life (state of mental health) and physical
quality of life (state of physical health). In reference to these outcomes, the aim of the analysis is the
evaluation of relative effectiveness of participating hospitals on the re-hospitalised patients, adjusted for
patient and hospital characteristics.
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Variables utilised in the study are described as follows.
Dependent variables, i.e. outcomes, are classified as: y1—outcome of patient’s final state of mental

health (continuous); y2—outcome of patient’s final state of physical health (continuous).
Patient-specific covariates are classified as: x1—outcome of patient’s initial state of mental health

(continuous); x2—outcome of patient’s initial state of physical health (continuous); x3—gender
(dichotomous); x4—length of stay (number of days; dichotomous); x5, x6—first and second re-hospitali-
sation (dichotomous), x7—age (number of years; discrete).

Hospital-specific covariates are classified as: f1, f2, f3—hospital type: case-mix (relative level of
case complexity in a hospital with respect to the regional mean; continuous); number of operating rooms
(discrete); average cost of hospital stay (continuous); f4—efficiency: revenue/costs ratio (continuous);
f5—structural dimensions: number of beds (discrete); f6, f7—personnel dimensions: number of physi-
cians (discrete); number of other personnel (discrete).

From the computational point of view, following Goldstein & Spiegelhalter (1996) and Spiegelhalter
et al. (1996), an SAS procedure based on MCMC algorithm (Gibbs sampling with rejection/acceptance
steps) has been developed in order to obtain numerical solutions for the conditional posterior distribu-
tions P(βββ|S−1

e , y) and P(u|S−1
e , y), which are in the multivariate normal form of order λ = 4. (Note that

the substitution of S−1
e for ���−1

e is adequate, since the sample size corresponds to the 10% of the popu-
lation size). As an example, Fig. 1 shows that, for physical outcomes, the theoretical cumulate density
function for random parameter u jv , regarding the hospital codified as 30156, is nearly superimposed on
the empirical cumulate density function; this holds for each hospital and each outcome.

With reference to DRG 138, Table B1 shows the expected values, the standard deviations and the
credible intervals for parameters β jτ (regarding patient characteristics) and δ jw (regarding hospital char-
acteristics); Fig. B2 represents the credible intervals for random residuals m jv of mental and physical
outcomes. Finally, Table B2 shows the results of hospital comparisons (obtained by means of credible
intervals for m jv ) and the ranking of hospitals.

Tables B3 and B4 and Fig. B3 show analogous results for DRG 243. (See Tables B1–B4 and Figs
B2–B3 in Appendix B.)

In Tables B1 and B3, we observe that the coefficients of patient-specific covariates are negligible,
which indicates that we have patients who are similar in age and gravity of initial state of health (chronic

FIG. 1. Theoretical and empirical cumulate density function for random parameter u jv regarding the hospital codified as
30156—physical outcomes DRG 138 and DRG 243.
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patients). On the contrary, coefficients of hospital-specific covariates are more relevant. In particular,
we note that coefficients of the same covariates differ between the two considered DRGs and also be-
tween the mental and physical outcomes for the same DRG. It is therefore clear that hospitals obtaining
better results regarding mental outcomes have different characteristics than hospitals which obtain better
results for the physical outcomes.

In particular, for DRG 138, the hospitals with the best results for mental and physical outcomes
seem to utilise more nursing personnel and less doctors. These findings can be explained by the fact
that chronic and long-term diseases need more regular care than intensive and specialised interventions.
Moreover, mental outcomes are negatively related to the number of beds and positively to the case-mix,
while physical outcomes depend positively on the number of beds and negatively on the case-mix. In
fact, physical aspects involved in DRG 138 need no sub-specialised treatments (i.e. cardiac intensive
care unit), which can be treated also in general hospitals; instead, mental aspects involved in DRG 138
are connected with particular treatments, which can be treated only in small specialised hospitals.

For the physical aspects involved in DRG 243, the best results are obtained by hospitals offering
long-term care with more nursing personnel. In fact, the best hospitals are very strongly and positively
associated with a higher number of nursing personnel and doctors and negatively with the number
of beds. The negativity of the coefficients regarding case-mix also suggests phenomena of case-mix
selection. Differently, the mental aspects of DRG 243 outcomes are positively dependent on the case-
mix and the number of nursing personnel, but negatively on the number of doctors and number of beds.

Regarding hospital comparisons (based on the criteria indicated at the end of the previous section),
groups of hospitals characterised by different grades of effectiveness are clearly identified (see Tables
B2 and B4 and Figs B2 and B3). In synthesis, there are three groups of hospitals characterised as
follows: ‘above the average’, ‘on the average’ and ‘below the average’ (note that the average level of
effectiveness equals zero), and each hospital is associated with a different level of variability (see Figs
B2 and B3). In particular, a large credible interval means that there is a different grade of effectiveness
for different groups of patients in the same hospital, i.e. the hospital in question has different healthcare
capacities regarding different states of health.

The results of the comparisons differ between the mental and physical outcomes.
In particular, for the mental aspects involved in DRG 138, most part of the hospitals considered in the

analysis indicate levels of effectiveness which are ‘on the average’ or ‘above the average’; in particular,
hospital 30914 indicates the best level of effectiveness and therefore can be qualified as ‘excellent’.
Instead, some attention must be devoted to the hospital 30024, characterised by a level of effectiveness
which is considerably ‘below the average’. Moreover, with reference to the hospitals characterised by
large credible intervals, a case by case study is required, as illustrated previously. For the physical
outcomes, a different ranking of hospitals is identified; in particular, most part of hospitals involved
in the analysis indicate a lower grade of effectiveness with respect to the mental outcomes, except for
hospitals 30156 and 30024. Some attention must be devoted to hospital 30274 and also to hospitals
30024 and 30902.

For the mental aspects involved in DRG 243, the hospitals characterised by the largest levels of
effectiveness (namely the last five of the sequence) indicate also the largest credible intervals, requiring
therefore a case by case study. The remaining hospitals, except for hospital 30022, are characterised by
small credible intervals and indicate different levels of effectiveness. Some attention must be devoted
to hospitals 30022, 30157 and 30159. For the physical outcomes, again the last five hospitals of the
sequence are characterised by the largest levels of effectiveness, but indicate different levels of effec-
tiveness with respect to the mental outcomes. Note that in this case, hospitals 30157 and 30159 indicate
levels of effectiveness which are ‘above the average’.
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5. Conclusions and further research

In this paper we have proposed a new methodology for the measurement of relative effectiveness of
hospital care under general conditions. For this topic, simultaneous dependency of outcomes on covari-
ates, hospital-specific covariates, multivariate normal distribution of order λ and non-informative prior
distribution have been assumed.

Future developments regarding three possible extensions of the methodology proposed are:

1. In order to generalise the original SURE multilevel model, we have introduced the assumption of
multivariate normal distribution of order λ for random disturbances and the random parameters
of relative effectiveness. A further generalisation would be the assumption of a non-symmetrical
distribution, e.g. the distribution entitled ‘Stable Alpha’ (Samorodmitsky & Takku, 1994).

2. Alternatively, we suggest the introduction of more general models, like the Cluster Weighted
Models (Gershenfeld et al., 1999), which are characterised by higher predictive capacity, without
sacrificing interpretability.

3. The methodology proposed has been applied to observational data. In order to attribute a gen-
eral value to the results presented in this paper, a possible extension would be to implement this
methodology using experimental data, drawn from experimental or quasi-experimental designs
typical of epidemiological and clinical studies. However, while epidemiological and clinical out-
comes and related case-mix variables can measure the effectiveness of the health institutions more
precisely (Kerr et al., 1998), problems of cost and time and the lack of adequate personnel can
make their use very problematic.
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Appendix A. Multivariate normality of order λ for P(u|���−1
e , y) and P(βββ|���−1

e , y)

We demonstrate that for the SURE multilevel model, introduced in Section 2, the conditional poste-
rior distributions for u and βββ, (indicated by P(u|���−1

e , y) and P(βββ|���−1
e , y), respectively), are in the

multivariate normal form of order λ.
For models characterised by correlated disturbance terms in separate equations (like the SURE

model), as initial estimates for u and βββ (indicated by û and β̂ββ, respectively), the Generalised Least
Squares estimators are utilised, which in this case correspond to:

[û, β̂ββ] = [y���−1
e Z′(Z���−1

e Z′)−1, y���−1
e X′(X���−1

e X′)−1], (A.1)

given that assumption (5) implies:

V =
(

Z���−1
e Z′ Z���−1

e X′
X���−1

e Z′ X���−1
e X′

)
=

(
Z���−1

e Z′ 0
0 X���−1

e X′
)

=
(

Vu 0
0 Vβββ

)
. (A.2)

The joint posterior distribution in (10) can be rewritten as a function of initial estimates û and β̂ββ as:

P(u, βββ,���−1
e |y) ∝ k|���−1

e |[n−(p+1)]/2

× exp{(−1){[(y − ûZ − β̂ββX) − (u − û)Z − (βββ − β̂ββ)X]

× ���−1
e [(y − ûZ − β̂ββX) − (u − û)Z − (βββ − β̂ββ)X]′}λ/2}. (A.3)

On indicating by q1, q2, q3 the quantities:

q1 = y − ûZ − β̂ββX,

q2 = (u − û)Z,

q3 = (βββ − β̂ββ)X,

(A.4)

and noting that (5), (A.1) and (A.2) imply:

q1���
−1
e q′

2 = 0,

q1���
−1
e q′

3 = 0,

q2���
−1
e q′

3 = 0,

(A.5)

we can rewrite formula (A.3) as:

P(u, βββ,���−1
e |y) ∝ k|���−1

e |[n−(p+1)]/2 exp{(−1)[q1���
−1
e q′

1 + q2���
−1
e q′

2 + q3���
−1
e q′

3]λ/2}. (A.6)

Given that a quadratic form (which is equal to a scalar) is equivalent to its trace, the (A.6) is equiva-
lent to: {

tr[q1���
−1
e q′

1 + q2���
−1
e q′

2 + q3���
−1
e q′

3]
}λ/2

. (A.7)

Applying to formula (A.7) the property of the trace of the matrix sum, namely tr(A+B) = tr(A)+ tr(B)
(Basilevsky, 1983, p. 103), we have:

{
tr[q1���

−1
e q′

1] + tr[q2���
−1
e q′

2] + tr[q3���
−1
e q′

3]
}λ/2

, (A.8)
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which can be factorised as:

{
tr[q1���

−1
e q′

1] + tr[q2���
−1
e q′

2] + tr[q3���
−1
e q′

3]
}2

× {
tr[q1���

−1
e q′

1] + tr[q2���
−1
e q′

2] + tr[q3���
−1
e q′

3]
}λ/2−2

. (A.9)

On completing the square in (A.9), we have:

tr[q1���
−1
e q′

1] · tr[q1���
−1
e q′

1] + tr[q2���
−1
e q′

2] · tr[q2���
−1
e q′

2]

+ tr[q3���
−1
e q′

3] · tr[q3���
−1
e q′

3] + 2 tr[q1���
−1
e q′

1] · tr[q2���
−1
e q′

2]

+ 2 tr[q1���
−1
e q′

1] · tr[q3���
−1
e q′

3] + 2 tr[q2���
−1
e q′

2] · tr[q3���
−1
e q′

3]. (A.10)

The first three terms in (A.10) can be rewritten as:

[q1���
−1
e q′

1]2 + [q2���
−1
e q′

2]2 + [q3���
−1
e q′

3]2. (A.11)

The second three terms in (A.10) can be rewritten as:

2 tr[q1���
−1
e q′

1] · tr[q2���
−1
e q′

2���e���
−1
e ] + 2 tr[q1���

−1
e q′

1] · tr[q3���
−1
e q′

3���e���
−1
e ]

+ 2 tr[q2���
−1
e q′

2] · tr[q3���
−1
e q′

3���e���
−1
e ]. (A.12)

Applying to the (A.12) the commutative law of the matrix product, namely tr(AB) = tr(BA)
(Basilevsky, 1983, p. 103), we have:

2 tr[q1���
−1
e q′

1] · tr[���−1
e q2���

−1
e q′

2���e] + 2 tr[q1���
−1
e q′

1] · tr[���−1
e q3���

−1
e q′

3���e]

+ 2 tr[q2���
−1
e q′

2] · tr[���−1
e q3���

−1
e q′

3���e]. (A.13)

Using the property of the trace of the Kronecker product, namely tr(A ⊗ B) = tr(A) · tr(B) (Basilevski,
1983, p. 104), we obtain:

2 tr[q1���
−1
e q′

1 ⊗ ���−1
e q2���

−1
e q′

2���e] + 2 tr[q1���
−1
e q′

1 ⊗ ���−1
e q3���

−1
e q′

3���e]

+ 2 tr[q2���
−1
e q′

2 ⊗ ���−1
e q3���

−1
e q′

3���e]. (A.14)

Note that the first term of each of the three Kronecker products is equal to a scalar; recall that for a
scalar k, we have k ⊗ A = k · A (Basilevski, 1983, p. 87), from the (A.14) we obtain:

2 tr[q1���
−1
e q′

1 · ���−1
e q2���

−1
e q′

2���e] + 2 tr[q1���
−1
e q′

1 · ���−1
e q3���

−1
e q′

3���e]

+ 2 tr[q2���
−1
e q′

2 · ���−1
e q3���

−1
e q′

3���e] = 0. (A.15)

Applying an analogous procedure to the (λ/2 − 2) powers in (A.9) and given that the ‘mixed products’
always equal to zero, it is easy to demonstrate that formula (A.6) is equivalent to:

P(u, βββ,���−1
e |y) ∝ k|���−1

e |[n−(p+1)]/2

× exp
{
(−1){[q1���

−1
e q′

1]λ/2 + [q2���
−1
e q′

2]λ/2 + [q3���
−1
e q′

3]λ/2}}. (A.16)

 at O
sp S G

erardo on D
ecem

ber 13, 2016
http://im

am
an.oxfordjournals.org/

D
ow

nloaded from
 

http://imaman.oxfordjournals.org/


MEASURING RELATIVE EFFECTIVENESS OF HEALTHCARE SERVICES 251

On substituting the definitions for q1, q2, q3, the (A.16) can be rewritten as:

P(u, βββ,���−1
e |y) ∝ c|���−1

e |[n−(p+1)+q+t]/2 exp
{
(−1)[(y − ûZ − β̂ββX)���−1

e (y − ûZ − β̂ββX)′]λ/2}
× c|���−1

e |−q/2 exp
{
(−1)[(u − û)Vu(u − û)′]λ/2}

× c|���−1
e |−t/2 exp

{
(−1)[(βββ − β̂ββ)Vβββ(βββ − β̂ββ)′]λ/2}, (A.17)

where c = 3
√

k is a proportionality coefficient.
The (A.17) expresses the joint posterior distribution for parameters (u, βββ,���−1

e ) as a product of three
densities, which are proportional to P(���−1

e |y), P(u|βββ,���−1
e , y) and P(βββ|���−1

e , y), respectively. From
(A.17) we can see that according to the exchangeability for u and βββ, P(u|βββ,���−1

e , y) = P(u|���−1
e , y),

and distributions P(u|���−1
e , y) and P(βββ|���−1

e , y) are in the multivariate normal form of order λ.

Appendix B

TABLE B1 Coefficients β jτ and δ jw—DRG 138: Cardiac Arrhythmia and Conduction
Disorders with CC

Standard Credible intervals
Variables Mean deviation boundaries (5◦–95◦)
Mental outcome

Intercept 12.9944 9.7108 7.9759 18.0591
Age −0.3677 0.4267 −0.5846 −0.1444
Gender −1.1749 1.0093 −1.6977 −0.6655
Length of stay 0.1200 0.1143 0.0626 0.1782
Initial status of the patient −0.6052 0.0507 −0.6315 −0.5792
1st readmission 1.5830 1.4000 0.8707 2.3083
2nd readmission −2.4185 1.3930 −3.1504 −1.6834
Case-mix 12.4720 8.4112 8.0994 16.7934
Revenue / costs ratio 4.0766 2.3789 2.8512 5.3178
Number of beds −11.8361 12.7455 18.4425 −5.5421
Number of doctors −13.5155 7.8799 17.4642 −9.4672
Number of nursing personnel 22.1272 16.6445 13.6051 30.6515
Number of operating rooms −1.2530 5.2501 −4.0106 1.4976

Physical outcome
Intercept 53.0006 9.2607 48.2590 57.6596
Age −2.9215 0.4597 −3.1556 −2.6847
Gender −4.9912 1.0909 −5.5494 −4.4275
Length of stay 0.3115 0.1218 0.2486 0.3748
Initial status of the patient −0.6460 0.0480 −0.6707 −0.6216
1st readmission −2.6582 1.4573 −3.4251 −1.8871
2nd readmission 0.5799 1.4285 −0.1812 1.3356
Case-mix −31.7312 8.5062 −36.1835 27.3803
Revenue / costs ratio −2.1048 2.5044 −3.4052 −0.8335
Number of beds 9.5460 13.3204 2.6505 16.6378
Number of doctors −23.8880 17.6963 −32.9683 15.0675
Number of nursing personnel 20.4335 8.1366 16.3149 24.6361
Number of operating rooms −13.2090 5.5442 −16.1118 10.2839
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FIG. B2. Credible intervals for m jv (relative effectiveness)—DRG 138: Cardiac Arrhythmia and Conduction Disorders with CC.

TABLE B2 Matches and ranking of hospitals—DRG 138: Cardiac Arrhythmia and Conduction Dis-
orders with CC

30024 30156 30274 30902 30903 30906 30913 30914 Total Rank
Mental outcome

30024 −1 1 0 −1 −1 0 0 −2 8◦
30156 1 1 0 0 0 0 0 2 1◦
30274 −1 −1 0 1 1 0 −1 −1 7◦
30902 0 0 0 0 0 0 0 0 3◦
30903 1 0 −1 0 0 0 0 0 3◦
30906 1 0 −1 0 0 0 0 0 3◦
30913 0 0 0 0 0 0 0 0 3◦
30914 0 0 1 0 0 0 0 1 2◦

Physical outcome
30024 −1 −1 −1 −1 −1 −1 −1 −7 8◦
30156 1 0 −1 −1 −1 −1 −1 −4 7◦
30274 1 0 0 −1 −1 −1 −1 −3 6◦
30902 1 1 0 0 0 0 −1 1 5◦
30903 1 1 1 0 0 0 −1 2 3◦
30906 1 1 1 0 0 0 −1 2 3◦
30913 1 1 1 0 0 0 0 3 2◦
30914 1 1 1 1 1 1 0 6 1◦
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TABLE B3 Coefficients β jτ and δ jw—DRG 243: Medical Back Problems

Standard Credible intervals
Variables Mean deviation boundaries (5◦–95◦)
Mental outcome

Intercept 33.0239 20.9216 22.0694 43.9973
Age −1.6437 0.3276 −1.8183 −1.4786
Gender −1.7255 0.6822 −2.0860 −1.3744
Length of stay 0.1248 0.0581 0.0948 0.1542
Initial status of the patient
1st readmission −2.4644 0.4598 −2.7037 −2.2245
2nd readmission 2.0356 0.6180 1.7165 2.3510
Case-mix 21.1294 10.5171 15.7609 26.5980
Revenue/costs ratio −20.3868 11.7200 −26.5317 −14.4540
Number of beds −10.6142 40.5823 −32.1399 9.9538
Number of doctors −11.8827 9.8347 −16.9848 −6.6896
Number of nursing personnel 16.8247 37.2695 −2.9458 36.2514
Number of operating rooms 1.9809 13.5498 −5.0880 9.0541

Physical outcome
Intercept −15.0200 22.6890 −26.9133 −3.5256
Age −1.2539 0.3569 −1.4401 −1.0731
Gender −2.1114 0.7643 −2.4970 −1.7153
Length of stay −0.0882 0.0648 −0.1221 −0.0547
Initial status of the patient −0.6652 0.0300 −0.6808 −0.6502
1st readmission −1.2348 0.5109 −1.4912 −0.9724
2nd readmission 0.1122 0.6566 −0.2266 0.4437
Case-mix −33.1594 11.2902 −39.0753 −27.3606
Revenue/costs ratio 46.5248 12.8400 39.9314 53.0148
Number of beds −101.1315 44.3381 −123.8517 −78.5247
Number of doctors 16.7576 10.8661 11.1008 22.2761
Number of nursing personnel 109.4583 41.4942 87.7564 130.9669
Number of operating rooms −39.9162 15.0549 −47.7054 −32.3657

FIG. B3. Credible intervals for m jv (relative effectiveness)—DRG 243: Medical Back Problems.
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